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Our study introduces a QSP platform designed for ADCs, demonstrated through its 
application to PADCEV. This platform effectively models ADC PK and efficacy, addressing key 
development challenges. As a proof of concept, we show the potential for optimizing ADC 
design by evaluating factors such as linker stability and minimizing off-target effects. 
Enhanced by data from similar ADCs such as Brentuximab Vedotin (BV), the platform hold 
promises to reduce development time and costs through more efficient trial design and 
outcome prediction. Future expansions could include additional ADCs, adverse effect 
analysis, and adaptation for various cancer types.

Antibody-drug conjugates (ADCs) are innovative therapies designed to selectively target and deliver cytotoxic drugs to cancer cells. However, their development is often hampered by the 
intricate interplay between the antibody, linker, and payload components that significantly influence the distribution, potency, and overall efficacy of ADCs. To streamline the development 
process and enhance the prediction of therapeutic outcomes, we propose leveraging data from both approved and under investigation ADCs to build a QSP platform that can support drug 
development. In this context, we present our initial progress in developing such a platform, using PADCEV as a case study. PADCEV is a Nectin-4 targeting ADC with Monomethyl auristatin E 
(MMAE) as cytotoxic payload. By using PADCEV as an example, we demonstrate how our QSP platform can help in optimizing trial design.

BACKGROUND

CONCLUSION

METHODS

We developed a multi-species physiologically-based pharmacokinetic (PBPK) model 
to simulate the distribution of ADCs and free payloads. A DAR-based clearance and 
dissociation were added, higher DAR increasing non-specific clearance [3], and 
leading to more dissociation [4][5]. This model, trained with literature 
pharmacokinetic data from mouse studies (free MMAE) and human data (PADCEV), 
incorporates payload release via on-target binding or non-specific clearance and 
integrates ADC binding and internalization. Due to the lack of specific in vitro data for 
PADCEV, we used data from Brentuximab Vedotin (BV), which shares the same linker 
and payload, to inform our model. We then connected this to a Simeoni tumor growth 
model (Figure 2) to replicate preclinical bladder cancer tumor profiles. Finally, we 
trained the model with PADCEV efficacy literature data from both mice experiments [1] 
and a Phase 1 study [2], using a realistic virtual population to match Phase 1 outcomes.

Figure 1: ADC platform development process from model development to model calibration to finally investigate and explore research questions 
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Informed by PADCEV pharmacokinetics (PK) data and supported by in vitro data from 
Brentuximab Vedotin (BV), the platform accurately captures the PK of PADCEV, 
including the free payload, total antibody, and ADC, and replicates efficacy outcomes 
from a preclinical experiment [1] and a Phase I study [2] (Figure 1).
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Figure 2: Schematic of the ADC QSP platform including tumor growth, clinical outcome and PBPK modules.

We used the Jinkō platform to investigate the 
impact of administration regimen on time to 
progression. We ran an exploratory 2-arm in silico 
trial on a virtual population of 100 patients with the 
previously calibrated ADC model: 
● Arm A with QW 1 mg/kg regimen
● Arm B with Q3W 3 mg/kg regimen.
We chose the total dose administered during a 
cycle to be similar between both arms so that the 
exposure is the same in the two scenarios. 

Patients receiving more frequent treatment showed a prolonged duration of response, 
suggesting a slower rate of disease progression, as illustrated in Figure 3. Less frequent 
administration with higher doses leads indeed to higher peak-to-trough ratio and decreases 
the time spent above critical efficacy threshold, resulting in more rapid disease progression.
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Figure 3: Time to progression and 95% confidence 
intervals estimated using the Kaplan-Meier estimator


